

BRANION[®] Anion Exchange Membrane

Branion[®] membrane is an anion-exchange membrane, non-reinforced with low resistance, high mechanical stability, and high stability in pH acidic and basic environments. The polymer backbone for this membrane is based on a proprietary hydrocarbon resin. It has excellent chemical stability in alcohol and ketone solvents (such as ethanol, iso-propanol, acetone, butanol et.al.).

Branion [®] Membranes	
Typical Thickness (μm)	30, 50, 80
IEC, meq/g	2.8
Tensile Strength, MPa	>45
Elongation at Break, %	>40
Water Uptake, 80 °C in 1M KOH	~60%
Dimensional Expansion, 80 °C in 1M KOH	<10%
OH ⁻ Conductivity, 20 °C, mS cm ⁻¹	>60
OH ⁻ Conductivity, 80 °C, mS cm ⁻¹	>160
Polymer decomposition temperature, °C	>250

Delivery and storage:

The membrane is delivered between a backing and cover foil. The membrane is in dry I⁻ form. Long term storage in the dry form is best done in sealed original bag with minimum exposure to heat , moisture and light. Wet storage may be done in containers containing water or aqueous electrolytes (e.g. KOH).

Handling:

Keep membrane package closed / sealed when unused. Unpack membrane only for direct use and process it immediately after opening. Store, handle and process the membrane in a clean and dust free area. Always wear protective gloves when handling the membrane.

Pre-treatment protocol:

Depending on specific applications and cell designs, assembly may be possible in either the dry form (without pre-treatment), or the wet form (with pre-treatment).

For AEM water electrolysis or any other application that requires the hydroxide ion transfer across the membrane, the membrane should be converted into OH^- form for optimal conductivity. To convert the membrane to OH^- form, place the membrane in an aqueous solution of 1M KOH or NaOH for 1 h at room temperature. After 1 h, replace the solution with fresh 1M KOH or NaOH and allow the membrane to soak for 1 h at room temperature again. Repeat the soaking at least three times, then rinse the membrane with DI water. Minimize exposure to ambient air, as the CO_2 can convert the membrane into carbonate form.